Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(1): 95-101, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131067

RESUMO

Enhancing the electrochemical activity of graphene holds great significance for expanding its applications in various electrochemistry fields. In this study, we have demonstrated a facile and quantitative approach for modulating the defect density of single-layer graphene (SLG) via an electrochemically induced bromination process facilitated by cyclic voltammetry. This controlled defect engineering directly impacts the heterogeneous electron transfer (HET) rate of SLG. By utilizing Raman spectroscopy and scanning electrochemical microscopy (SECM), we have established a correlation between the HET kinetics and both the defect density (nD) and mean distance between defects (LD) of SLG. The variation of the HET rate (k0) with the defect density manifested a distinctive three-stage behavior. Initially, k0 increased slightly with the increasing nD, and then it experienced a rapid increase as nD further increased. However, once the defect density surpassed a critical value of about 1.8 × 1012 cm-2 (LD < 4.2 nm), k0 decreased rapidly. Notably, the results revealed a remarkable 35-fold enhancement of k0 under the optimal defect density conditions compared to pristine SLG. This research paves the way for controllable defect engineering as a powerful strategy to enhance the electrochemical activity of graphene, opening up new possibilities for its utilization in a wide range of electrochemical applications.

2.
Chem Sci ; 14(17): 4500-4505, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152253

RESUMO

As a semimetal with a zero band gap and single-atom-scale thickness, single layer graphene (SLG) has excellent electron conductivity on its basal plane. If the band gap could be opened and regulated controllably, SLG would behave as a semiconductor. That means electronic elements or even electronic circuits with single-atom thickness could be expected to be printed on a wafer-scale SLG substrate, which would bring about a revolution in Moore's law of integrated circuits, not by decreasing the feature size of line width, but by piling up the atomic-scale-thickness of an SLG circuit board layer by layer. Employing scanning electrochemical microscopy (SECM), we have demonstrated that the electrochemically induced brominating addition reaction can open and regulate the band gap of SLG by forming SLG bromide (SLGBr). The SLG/SLGBr/SLG Schottky junction shows excellent performance in current rectification, and the rectification potential region can be regulated by tuning the degree of bromination of SLG. This work provides a feasible and effective way to regulate the band gap of SLG, which would open new applications for SLG in micro-nano electronics and ultra-large-scale integrated circuits (ULSI).

3.
J Phys Chem Lett ; 14(22): 5163-5171, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253105

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has been widely applied in the identification and characterization of DNA structures with high efficiency. Especially, the SERS signals of the adenine group have exhibited high detection sensitivity in several biomolecular systems. However, there is still no unanimous conclusion regarding the interpretation of some special kinds of SERS signals of adenine and its derivatives on silver colloids and electrodes. This Letter presents a new photochemical azo coupling reaction for adenyl residues, in which the adenine is selectively oxidized to (E)-1,2-di(7H-purin-6-yl) diazene (azopurine) in the presence of silver ions, silver colloids, and electrodes of nanostructures under visible light irradiation. The product, azopurine, is first found to be responsible for the SERS signals. This photoelectrochemical oxidative coupling reaction of adenine and its derivatives is promoted by plasmon-mediated hot holes and is regulated by positive potentials and pH of solutions, which opens up new avenues for studying azo coupling in the photoelectrochemistry of adenine-containing biomolecules on electrode surfaces of plasmonic metal nanostructures.

4.
mBio ; 14(1): e0338222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622146

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Nef hijacks the clathrin adaptor complex 2 (AP-2) to downregulate the viral receptor CD4 and the antiviral multipass transmembrane proteins SERINC3 and SERINC5, which inhibit the infectivity of progeny virions when incorporated. In Jurkat Tag T lymphoid cells lacking SERINC3 and SERINC5, Nef is no longer required for full progeny virus infectivity and for efficient viral replication. However, in MOLT-3 T lymphoid cells, HIV-1 replication remains highly dependent on Nef even in the absence of SERINC3 and SERINC5. Using a knockout (KO) approach, we now show that the Nef-mediated enhancement of HIV-1 replication in MOLT-3 cells does not depend on the Nef-interacting kinases LCK and PAK2. Furthermore, Nef substantially enhanced HIV-1 replication even in triple-KO MOLT-3 cells that simultaneously lacked the three Nef/AP-2 targets, SERINC3, SERINC5, and CD4, and were reconstituted with a Nef-resistant CD4 to permit HIV-1 entry. Nevertheless, the ability of Nef mutants to promote HIV-1 replication in the triple-KO cells correlated strictly with the ability to bind AP-2. In addition, knockdown and reconstitution experiments confirmed the involvement of AP-2. These observations raise the possibility that MOLT-3 cells express a novel antiviral factor that is downregulated by Nef in an AP-2-dependent manner. IMPORTANCE The HIV-1 Nef protein hijacks a component of the cellular endocytic machinery called AP-2 to downregulate the viral receptor CD4 and the antiviral cellular membrane proteins SERINC3 and SERINC5. In the absence of Nef, SERINC3 and SERINC5 are taken up into viral particles, which reduces their infectivity. Surprisingly, in a T cell line called MOLT-3, Nef remains crucial for HIV-1 spreading in the absence of SERINC3 and SERINC5. We now show that this effect of Nef also does not depend on the cellular signaling molecules and Nef interaction partners LCK and PAK2. Nef was required for efficient HIV-1 spreading even in triple-knockout cells that completely lacked Nef/AP-2-sensitive CD4, in addition to the Nef/AP-2 targets SERINC3 and SERINC5. Nevertheless, our results indicate that the enhancement of HIV-1 spreading by Nef in the triple-knockout cells remained AP-2 dependent, which suggests the presence of an unknown antiviral factor that is sensitive to Nef/AP-2-mediated downregulation.


Assuntos
HIV-1 , Humanos , Antivirais/farmacologia , Antígenos CD4 , Linhagem Celular , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Replicação Viral
5.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500690

RESUMO

Metal-organic frames (MOFs) have recently been used to support redox enzymes for highly sensitive and selective chemical sensors for small biomolecules such as oxygen (O2), hydrogen peroxide (H2O2), etc. However, most MOFs are insulative and their three-dimensional (3D) porous structures hinder the electron transfer pathway between the current collector and the redox enzyme molecules. In order to facilitate electron transfer, here we adopt two-dimensional (2D) metal-organic layers (MOLs) to support the HRP molecules in the detection of H2O2. The correlation between the current response and the H2O2 concentration presents a linear range from 7.5 µM to 1500 µM with a detection limit of 0.87 µM (S/N = 3). The sensitivity, reproducibility, and stability of the enzyme sensor are promoted due to the facilitated electron transfer.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Enzimas Imobilizadas/química
6.
FASEB J ; 36(7): e22392, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716070

RESUMO

N6 -methyladenosine (m6 A) is the most abundant mRNA modification affecting diverse biological processes. However, the functions and precise mechanisms of m6 A signaling in adult hippocampal neurogenesis and neurogenesis-related depression remain largely enigmatic. We found that depletion of Mettl3 or Mettl14 in neural stem cells (NSCs) dramatically reduced m6 A abundance, proliferation, and neuronal genesis, coupled with enhanced glial differentiation. Conversely, overexpressing Mettl3 promoted proliferation and neuronal differentiation. Mechanistically, the m6 A modification of Lrp2 mRNA by Mettl3 enhanced its stability and translation efficiency relying on the reader protein Ythdc2, which in turn promoted neurogenesis. Importantly, mice lacking Mettl3 manifested reduced hippocampal neurogenesis, which could contribute to spatial memory decline, and depression-like behaviors. We found that these defective behaviors were notably reversed by Lrp2 overexpression. Moreover, Mettl3 overexpression in the hippocampus of depressive mice rescues behavioral defects. Our findings uncover the biological role of m6 A modification in Lrp2-mediated neurogenesis via m6 A-binding protein Ythdc2, and propose a rationale that targeting Mettl3-Ythdc2-Lrp2 axis regulation of neurogenesis might serve as a promising antidepressant strategy.


Assuntos
Adenosina , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Metiltransferases , Neurogênese , RNA Helicases , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metiltransferases/metabolismo , Camundongos , Neurogênese/fisiologia , RNA Helicases/metabolismo , RNA Mensageiro/genética
7.
Stem Cells ; 40(1): 59-73, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511865

RESUMO

Increased neurogenesis elicits antidepressive-like effects. The antidiabetic drug metformin (Met) reportedly promotes hippocampal neurogenesis, which ameliorates spatial memory deficits and depression-like behaviors. However, the precise molecular mechanisms underpinning Met-induced neuronal differentiation of neural stem cells (NSCs) remain unclear. We showed that Met enhanced neuronal differentiation of NSCs via Gadd45g but not Gadd45a and Gadd45b. We further found that Gadd45g increased demethylation of neurogenic differentiation 1 promoter by regulating the activity of passive and active DNA demethylation enzymes through an adenylate-activated protein kinase -independent mechanism in Met-treated NSCs. Importantly, genetic deficiency of Gadd45g decreased hippocampal neurogenesis, which could contribute to spatial memory decline, and depression-like behaviors in the adult mice, whereas forced expression of Gadd45g alleviated the depressive-like behaviors. Our findings provide a model that Gadd45g-mediated DNA demethylation contributes to Met-induced neuronal genesis and its antidepressant-like effects and propose the concept that targeting Gadd45g regulation of neurogenesis might serve as a novel antidepressant strategy.


Assuntos
Metformina , Células-Tronco Neurais , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Desmetilação do DNA , Hipocampo/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese
8.
Pharmacol Res ; 179: 106235, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472635

RESUMO

Adult hippocampal neurogenesis (AHN) is heavily implicated in the pathogenesis of various neuropsychiatric disorders. The mangiferin (MGF), a bioactive compound of the mango, reportedly produces biological effects on a variety of neuropsychiatric disorders. However, the function and underlying mechanisms of MGF in regulating hippocampal neurogenesis remain unknown. Here we discovered that the transcriptome and methylome of MGF-induced neural stem cells (NSCs) are distinct from the control. RNA-seq analysis revealed that the diferentially expressed genes (DEGs) were signifcantly enriched in the PPARs. Furthermore, we found that MGF enhanced neuronal differentiation and proliferation of neural stem cells (NSCs) via PPARß but not PPARα and PPARγ. The combination of WGBS and RNA-seq analysis showed that the expression of some neurogenesis genes was negatively correlated with the DNA methylation level generally. We further found that PPARß increased demethylation of Mash1 promoter by modulating the expressions of active and passive DNA demethylation enzymes in MGF-treated NSCs. Importantly, genetic deficiency of PPARß decreased hippocampal neurogenesis in the adult mice, whereas the defective neurogenesis was notably rescued by Mash1 overexpression. Our findings uncover a model that PPARß-mediated DNA demethylation of Mash1 contributes to MGF-induced neuronal genesis, and advance the concept that targeting PPARß-TET1/DNMT3a-Mash1 axis regulation of neurogenesis might serve as a novel neurotherapeutic strategy.


Assuntos
Células-Tronco Neurais , PPAR beta , Animais , Camundongos , Desmetilação do DNA , Neurogênese , PPAR beta/genética , PPAR beta/metabolismo , Xantonas
9.
Analyst ; 147(7): 1499-1508, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35290422

RESUMO

Efficient separation and enrichment is a crucial step in the analysis of Se(IV) and Se(VI). In the present study, for the first time, online monolith-based magnetic field-assisted in-tube solid phase microextraction (MFA/IT-SPME) was applied to capture inorganic selenium species in water samples. To this aim, porous monoliths mixed with magnetic nanoparticles were synthesized in a silica capillary and employed as a microextraction column (MEC) for MFA/IT-SPME. After that, a magnetic coil utilized to induce variable magnetic fields in adsorption and desorption steps was entwined around the MEC. Se(IV) was coordinated with o-phenylenediamine to form a coordination compound that was infused onto the MEC to be captured. Results evidenced that application of magnetic field during the extraction procedure assisted the capture of the Se(IV)-OPA complex, with an enhancement in the extraction efficiency from 83% to 97%. Under the optimized conditions, MFA/IT-SPME was online combined with HPLC equipped with a diode array detector (DAD) to perform quantification of Se(IV) and Se(VI) in environmental water samples. Total inorganic Se was quantified after pre-reduction of Se(VI) to Se(IV) prior to applying the established approach, and a subtraction method was adopted to calculate the Se(VI) and Se(IV) contents. The limit of detection for Se(IV) was as low as 0.012 µg L-1. The reliability of the suggested method was investigated by assaying Se(IV) and Se(VI) species in real-life water samples with satisfactory recoveries (81.1%-116%) and repeatability (RSDs below 9%).


Assuntos
Selênio , Poluentes Químicos da Água , Campos Magnéticos , Reprodutibilidade dos Testes , Selênio/química , Microextração em Fase Sólida/métodos , Água/química , Poluentes Químicos da Água/análise
10.
Angew Chem Int Ed Engl ; 61(16): e202117834, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35068043

RESUMO

Precise control and accurate understanding of the ordering degree of bimetallic nanocatalysts (BNs) are challenging yet crucial to acquire advanced materials for the oxygen reduction reaction (ORR). AuCu BNs with various ordering degrees were synthesized to evaluate the influence of ordering degree on the ORR at a molecular level using in situ Raman spectroscopy. The activity of AuCu BNs was improved by over 2 times after a disorder-to-order transition, making the performance of highly ordered AuCu BNs exceed that of benchmark Pt/C. Direct Raman spectroscopic evidence of key intermediate (*OH) demonstrates that the active site is the combination site of Au and Cu. Moreover, two distinct *OH species are observed on the ordered and disordered structure, and the ordered site is more beneficial for ORR due to its lower affinity to *OH. This work deepens the understanding on the important role of ordering degree on BNs and enables the design of improved catalysts.

11.
Angew Chem Int Ed Engl ; 61(5): e202112749, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34806809

RESUMO

Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.

12.
Sci Adv ; 7(44): eabj7398, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714669

RESUMO

BST2 is an interferon-inducible antiviral host protein antagonized by HIV-1 Vpu that entraps nascent HIV-1 virions on the cell surface. Unexpectedly, we find that HIV-1 lacking Nef can revert to full replication competence simply by losing the ability to antagonize BST2. Using gene editing together with cell sorting, we demonstrate that even the propagation of wild-type HIV-1 is strikingly dependent on BST2, including in primary human cells. HIV-1 propagation in BST2−/− populations can be fully rescued by exogenous BST2 irrespective of its capacity to signal and even by an artificial BST2-like protein that shares its virion entrapment activity but lacks sequence homology. Counterintuitively, our results reveal that HIV-1 propagation is critically dependent on basal levels of virion tethering by a key component of innate antiviral immunity.

13.
J Am Chem Soc ; 143(38): 15635-15643, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34541841

RESUMO

Understanding the fundamental insights of oxygen activation and reaction at metal-oxide interfaces is of significant importance yet remains a major challenge due to the difficulty in in situ characterization of active oxygen species. Herein, the activation and reaction of molecular oxygen during CO oxidation at platinum-ceria interfaces has been in situ explored using surface-enhanced Raman spectroscopy (SERS) via a borrowing strategy, and different active oxygen species and their evolution during CO oxidation at platinum-ceria interfaces have been directly observed. In situ Raman spectroscopic evidence with isotopic exchange experiments demonstrate that oxygen is efficiently dissociated to chemisorbed O on Pt and lattice Ce-O species simultaneously at interfacial Ce3+ defect sites under CO oxidation, leading to a much higher activity at platinum-ceria interfaces compared to that at Pt alone. Further in situ time-resolved SERS studies and density functional theory simulations reveal a more efficient molecular pathway through the reaction between adsorbed CO and chemisorbed Pt-O species transferred from the interfaces. This work deepens the fundamental understandings on oxygen activation and CO oxidation at metal-oxide interfaces and offers a sensitive technique for the in situ characterization of oxygen species under working conditions.

14.
J Hazard Mater ; 411: 125141, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33485231

RESUMO

In this study, a novel sorbent based on task specific monolith doped with Fe3O4 was in situ fabricated in capillary and acted as the extraction medium of magnetic field-reinforced in-tube solid phase microextraction (MFR/IT-SPME) to trap and preconcentrate mercury species which were coordinated with dithizone to form chelates. Various characterization technologies evidenced that the obtained monolithic adsorbent presented porous and super paramagnetic properties, and possessed abundant functional groups. Results evidenced that the implementation of magnetic field during extraction stages enhanced the extraction efficiency of studied Hg chelates from 48.5% to 75.3% to 69.9-94.4%. Under the optimized extraction parameters, the introduced MFR/IT-SPME was online coupled to HPLC/DAD to quantify mercury species at ultra-trace levels in various water samples. Limits of detection varied from 0.0067 µg/L to 0.016 µg/L, and the RSDs for precision were below 7.5%. Additionally, related extraction mechanism was deduced and revealed multiple forces co-contributed to the enrichment. The reliability and accuracy of suggested online approach for speciation analysis of mercury was well proved by confirmatory experiments.

16.
mBio ; 10(3)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186327

RESUMO

It has recently emerged that HIV-1 Nef counteracts the antiviral host proteins SERINC3 and SERINC5. In particular, SERINC5 inhibits the infectivity of progeny virions when incorporated. SERINC3 and SERINC5 are also counteracted by the unrelated murine leukemia virus glycosylated Gag (glycoGag) protein, which possesses a potent Nef-like activity on HIV-1 infectivity. We now report that a minimal glycoGag termed glycoMA can fully substitute for Nef in promoting HIV-1 replication in Jurkat T lymphoid cells, indicating that Nef enhances replication in these cells mainly by counteracting SERINCs. In contrast, the SERINC antagonist glycoMA was unable to substitute for Nef in MOLT-3 T lymphoid cells, in which HIV-1 replication was highly dependent on Nef, and remained so even in the absence of SERINC3 and SERINC5. As in MOLT-3 cells, glycoMA was unable to substitute for Nef in stimulating HIV-1 replication in primary human cells. Although the ability of Nef mutants to promote HIV-1 replication in MOLT-3 cells correlated with the ability to engage endocytic machinery and to downregulate CD4, Nef nevertheless rescued virus replication under conditions where CD4 downregulation did not occur. Taken together, our observations raise the possibility that Nef triggers the endocytosis of a novel antiviral factor that is active against both laboratory-adapted and primary HIV-1 strains.IMPORTANCE The Nef protein of HIV-1 and the unrelated glycoGag protein of a murine leukemia virus similarly prevent the uptake of antiviral host proteins called SERINC3 and SERINC5 into HIV-1 particles, which enhances their infectiousness. We now show that although both SERINC antagonists can in principle similarly enhance HIV-1 replication, glycoGag is unable to substitute for Nef in primary human cells and in a T cell line called MOLT-3. In MOLT-3 cells, Nef remained crucial for HIV-1 replication even in the absence of SERINC3 and SERINC5. The pronounced effect of Nef on HIV-1 spreading in MOLT-3 cells correlated with the ability of Nef to engage cellular endocytic machinery and to downregulate the HIV-1 receptor CD4 but nevertheless persisted in the absence of CD4 downregulation. Collectively, our results provide evidence for a potent novel restriction activity that affects even relatively SERINC-resistant HIV-1 isolates and is counteracted by Nef.


Assuntos
HIV-1/genética , HIV-1/fisiologia , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Replicação Viral/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Antígenos CD4/genética , Linhagem Celular , Endocitose , Glicosilação , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(27): 7093-7098, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29891700

RESUMO

The p2b domain of Rous sarcoma virus (RSV) Gag and the p6 domain of HIV-1 Gag contain late assembly (L) domains that engage the ESCRT membrane fission machinery and are essential for virus release. We now show that the PPXY-type RSV L domain specifically recruits the BAR domain protein PACSIN2 into virus-like particles (VLP), in addition to the NEDD4-like ubiquitin ligase ITCH and ESCRT pathway components such as TSG101. PACSIN2, which has been implicated in the remodeling of cellular membranes and the actin cytoskeleton, is also recruited by HIV-1 p6 independent of its ability to engage the ESCRT factors TSG101 or ALIX. Moreover, PACSIN2 is robustly recruited by NEDD4-2s, a NEDD4-like ubiquitin ligase capable of rescuing HIV-1 budding defects. The NEDD4-2s-induced incorporation of PACSIN2 into VLP correlated with the formation of Gag-ubiquitin conjugates, indicating that PACSIN2 binds ubiquitin. Although PACSIN2 was not required for a single cycle of HIV-1 replication after infection with cell-free virus, HIV-1 spreading was nevertheless severely impaired in T cell lines and primary human peripheral blood mononuclear cells depleted of PACSIN2. HIV-1 spreading could be restored by reintroduction of wild-type PACSIN2, but not of a SH3 domain mutant unable to interact with the actin polymerization regulators WASP and N-WASP. Overall, our observations indicate that PACSIN2 promotes the cell-to-cell spreading of HIV-1 by connecting Gag to the actin cytoskeleton.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/transmissão , HIV-1/fisiologia , Replicação Viral/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/genética , Infecções por HIV/patologia , Humanos , Mutação , Domínios Proteicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Domínios de Homologia de src
18.
Cell Rep ; 22(4): 869-875, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386131

RESUMO

We recently identified the multipass transmembrane protein SERINC5 as an antiviral protein that can potently inhibit HIV-1 infectivity and is counteracted by HIV-1 Nef. We now report that the anti-HIV-1 activity, but not the sensitivity to Nef, is conserved among vertebrate SERINC5 proteins. However, a Nef-resistant SERINC5 became Nef sensitive when its intracellular loop 4 (ICL4) was replaced by that of Nef-sensitive human SERINC5. Conversely, human SERINC5 became resistant to Nef when its ICL4 was replaced by that of a Nef-resistant SERINC5. In general, ICL4 regions from SERINCs that exhibited resistance to a given Nef conferred resistance to the same Nef when transferred to a sensitive SERINC, and vice versa. Our results establish that human SERINC5 can be modified to restrict HIV-1 infectivity even in the presence of Nef.


Assuntos
Citoplasma/metabolismo , HIV-1/genética , Proteínas de Membrana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Humanos
19.
Talanta ; 165: 152-160, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153235

RESUMO

A multiple monolithic fiber solid-phase microextraction (MMF-SPME) utilizing polymeric ionic liquid-based adsorbent was prepared. The adsorbent was obtained by in situ copolymerization of an ionic liquid, 1-trimethyl-(4-vinylbenzyl) aminium chloride and dual cross-linkers (divinylbenzene and ethylenedimethacrylate). The effect of preparation conditions including the content of ionic liquid and porogen in the polymerization mixture on extraction performance was studied in detail. Infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry were used to inspect the physicochemical properties of the new adsorbent. The applicability of the new MMF-SPME was demonstrated by the extraction of trace endocrine disrupting chemicals (EDCs). Results indicated that the prepared MMF-SPME could extract EDCs effectively through multi-interactions such as ion-exchange, π-π and hydrophobic interactions. After optimization of extraction parameters, a method of MMF-SPME coupled to high performance liquid chromatography/diode array detection was conducted to detect trace EDCs in complicated samples including environmental water and human urine. The limits of detection (S/N=3) and quantification (S/N=10) for targeted compounds were 0.011-0.065µg/L and 0.036-0.21µg/L, respectively. Satisfactory precision was also achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSDs) of less than 9% and 10%, respectively. At the same time, the proposed method was successfully applied for the determination of EDCs in water and human urine with spiking recoveries ranged from 70.6% to 119%.

20.
Nat Commun ; 6: 8781, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26632262

RESUMO

The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Sulfolobaceae/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica em Archaea/fisiologia , HIV-1/fisiologia , Modelos Moleculares , Mutação , Conformação Proteica , Sulfolobaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...